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TRANSIENT RESONANCE OF AN IDEAL STRING
UNDER A LOAD MOVING WITH VARYING SPEED

F. T. FLAHERTY, JR.

Bell Telephone Laboratories. Inc.
Whippany. New Jersey

Abstract-The transverse velocity of an ideal string is obtained when the string experiences a point load moving
with varying speed. Two cases are evaluated in which the load either accelerates or decelerates through the charac
teristic string speed. The consequent momentary resonance is examined and the results show that as the load
speed passes through the string speed a singularity in transverse string velocity is produced which then propagates
at the string speed as a homogeneous wave. The string displacements remain continuous.

INTRODUCTION

IT is well known that certain continuous elastic systems exhibit a kind of resonance when
they experience loads, moving at some constant characteristic speed, for example, an ideal
string under a transverse load moving at the characteristic string speed [IJ, or a line load
moving over the surface of an elastic half-space at the Rayleigh speed [2, 3]. One of the im
portant properties of this resonance phenomenon has been investigated, that of the resonant
buildup observed after the load traveling at constant characteristic speed is first applied
[1,3]. However, for a resonance of this type, another property is also of importance and
apparently has not been investigated, that is, the momentary resonant coupling existing
at the instant a load traveling at continuously varying speed passes through the character
istic speed of the body. Such a momentary resonance probably occurs as an explosively
produced blast wave propagates over the surface of the earth, and in dissipating, slows down
through the Rayleigh speed of the soil.

In the present paper this second resonant property is examined for a simple situation.
In particular. the transverse velocity of an infinite, ideal string is obtained for two cases:
in Case I, a transverse point load appears at the origin at zero time and then moves along
the string with speed decreasing hyperbolically with distance through the characteristic
string speed; in Case II, a transverse point load appears at the origin at zero time and then
accelerates parabolically through the string speed. In both cases, a singularity in transverse
string velocity is generated the instant the load traverses the string speed, the singularity
thereafter propagating at the string speed as a homogeneous wave. These singularities
are integrable and the string displacements remain continuous. In the Appendix, the
solution for each case is examined in the limit as the speed of the load becomes constant
and the expected results are attained.

The method used is essentially a simplified form of Ang's [4J version of Cagniard's
method [5].
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GENERAL DEVELOPMENT

Given a uniform, infinite, taut string of tension T, assume that a transverse point load
.'fi' appears at the origin of coordinates at 1 = 0 and then moves to the right with some
varying speed U(x) (Fig. I).
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FIG. I. Schematic of the string problem.

The wel1-known ideal dynamic string equation may be wrilten

X20

(1)
x<o

where 1I is the transverse string displacement, a 2 = Tip, p = lineal density of the string,
F = amplitude of the point load, (j = Dirac delta function and the subscript x denotes a
partial derivative with respect to x and dots with respect to I. !(x) is the load arrival time
and is defined by

. f.x dlJ
.I (x) = 0 U(IJ)" (2)

The resultant load ff' of Fig. I is not a constant in time by virtue of the form of the force
density assumed in (l). Instead

ff'(t) = F f~oo 1)[I-f(x)J dx = Fllf'(xo)1

where the prime denotes differentiation with respect to the argument and Xo is defined by
/(xo) = I.

Taking the Laplace transform of (1) with respect to time, assuming zero initial condi
tions, gives

where in general

x<O
(3)

Cis) = roc G(t) e" dl.
Jo (4)
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Then applying Fourier transformation with respect to x, i.e.

G*(w) = f~o, G(x)e-
iwx dx,

(3) may be written

(5)

(6)

Using the inverse Fourier transform corresponding to (5), and changing the order of integra
tion, (6) becomes

pu __~ foo foo e-[sf(~)+iw~-iwxl

- 2 1 1 dw d~.
F 2rr 0 -00 s +a~w-

By making the substitution p = iw/s (7) becomes

(7)

(8)
pu -1 rctJ fioo e-s[f(~)+p(~-x)l

F = 2rri Jo _ictJa2s(p-1/a)(p+l/a)dpd~.

Since only forward Laplace transformations are to be considered, s can be assumed real
and positive. Then performing the simple contour integration over p in (8), keeping the
sign of ~ - x in mind, yields

2apsii = (00 e-s[f(~)+(l/a)(~-;<Il d~
F Jo

X>o

x < o.

(9)

(10)

Substituting t for the quantities in brackets in the exponents of(9, 10) gives, respectively,

2apsu SfIX
). f00 •

--= ~l(t)e-S'dt+ ~2(t)e-Sldt,

F x/a fix)

x>o (II)

2apsu _ foo t () -sl d
-- - '>2 t e t,

F -xja

where ~ 1 and ~ 2 are given by the relations

x < 0, (12)

t = f(~d-(~I -x)/a

and (13)

The lower limit takes on this simple form since/(O) = O.
The inverse Laplace transformation of (11, 12) may then be obtained by inspection

since the equations are written in the form of the forward Laplace transformation (4) and
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since the zero initial conditions assumed here allow sii = u. Thus, for x > 0

x/a < t < l(x)

and for x < °
{

~ l(t),
2apu .F = ~2(t), t > ((x)

0, on other intervals

(J4)

2 . 1~2(t),apu--- =
F 0,

t> -x/a

on other intervals
(15)

and the solution is obtained in general except at a finite number of isolated points.
The integration limits in (1 J, 12) and the interval limits in (14, 15) can only be considered

as starting and end points for t. It will be shown, for example, that t may first decrease
from the lower limit along one branch of the inverse function and then increase to the
upper limit along another branch. This condition arises because, in evaluating ~ I and ~2

from (13) explicitly, the proper branches must be used to ensure that'; traverses the intervals
defined by the limits in (9, 10) as t travels from one limit to the other in (11, 12).

Case I, U = c/x
From (2)

so that from (13),

(16)

The proper branches for ~ I are as follows: If x < cia, the branch with the minus sign
applies, and t decreases from x/a to x},/2c. Ifx > cia, the branch with the minus sign applies
as t decreases from x/a to the branch point x/a-e/2a},; then the branch with the plus sign
is appropriate as t increases from x/a - c/2a}, to x2/2c. The proper branch for ~2 in (11) is
that with the plus sign over the entire range so that (14) becomes, for x > 0,

2apu = A'+A"+B'
F

where

l
A,

A'=

0,

x < cia and x 2/2c < t < x/a

or x > cia and x/a-c/2a2 < t < x/a

on other intervals

(17)
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(19)

(18)
x> cia and x/a-c/2a2 < t < x 2/2c

on other intervals

t > x 2/2c

on other intervals

{
A,

A" =
0,

{
B,

B' =
0,

and

A = c[::+2C(t-;)J-t,
B = C[::+2C(t+;)J-t.

The proper branch for ¢2 in (12) is also that with the plus sign over the entire range so that
(15) becomes for x < 0,

2 . {B,apu
--=

F °,
t> -x/a

otherwise.
(20)

Normalized time-of-arrival plots for the homogeneous wave fronts and the load are
presented in Fig. 2. Also indicated are the regions of influence of the contributing solutions,

REGIONS OF INFLUENCE OF EOUATIONS

EO. (17) ,"""""""\ EO.(19)
111111111111 EO.IIB) ////////, EO.(20)

FIG. 2. Case I, time-of-arrival diagram (a2 tI2e) vs. (ax/2e).
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(17-20). The normalized velocity distributions of the string are plotted in Fig. 3 for four
instants of time. We note that the resonance occurs at a2tl2e = 0·25 and axl2e = 0·5
corresponding to U = a.
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FIG. 3. Case t. normalized velocity (pulF) vs. distance (axI2e) for four values of time (a 2 tI2e).

It is shown in the Appendix that the present solution reduces to the expected form as
e --> O. An interesting feature of this special case is that it is qualitatively like the string
problem with the loading Fb(t)b(x) but with only one b-function so that the resulting
velocity spikes have finite amplitude, the string momentum thus remains zero, and no
displacements are generated.

Case II, U = (ex + h)2

The extra parameter h must be introduced so that the initial speed of the point load is
nonzero. However, in order that the point load speed increases through the string speed,
we require that ~a > b > O. For U to be monotonically increasing with x, we also take
c > O. Then from (2)

r dlJ xlh
[(x) = Jo ~'f/+W = ;:x+b'

(21)
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From (13)

~1 = ![x-at+~-~J
2 be e

±[!(x_at+~_~)2 +~(x-at)J!,
4 be e e

and

~2 = ~[x+at- !!-._~J
2 be e

[(
a b) 2 b Jt± x+at---- +-(at+x) .
be e e

(22)

The proper branches for ~ 1 are as follows: If x < (..Ja - b)/e, the branch with the minus sign
applies as t increases from x/a to x/b(ex + b). If x > (..Ja - b)/e, t increases from x/a to
(x/a + b/ea + l/be - 2/e..Ja) along the branch with the minus sign and then decreases from
this latter value to x/b(ex + b) along the branch with the plus sign. The proper branch for
~2 in (11) is that with the plus sign over the entire interval. Then (14) becomes, for x > 0

2 .
apu = C' + C" + D'
F

where

j
-a/2+C,x < (..Ja-b)je and x/a < t < x/b(ex+b)

C' = or x> (..Ja-b)je and x/a < t < x/a + b/ea + 1/be-2/e..Ja (23)

0, on other intervals

C

" __ ja/2+c, x> (..Ja-b)/e and

x/b(ex+b) < t < x/a + b/ea + 1/be-2/e..Ja (24)

0, on other intervals

D' ={a/2+D,
0,

t > x/b(ex+b)

on other intervals
(25)

whare

and

a( a b)[( a b)2 b J-tC = - x-at+-+- x-at+--- +4-(x-at)
2 be e be e e

a( a b)[( a b)2 b J- t
D = - x+at--+- x+at---- +4-(x+at) .

2 be e be e e
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The branch for ~2 in (15) is again tha t with the plus sign over the entire interval so that
(15) becomes, for x < 0,

2apu = { a/2 + D,

F 0,

t> -x/a

otherwise.
(26)

Normalized time-of-arrival plots and regions of influence of the equations for this case
are shown in Fig. 4 assuming that a/h2 = 4. The normalized velocity distributions of the
string are plotted in Fig. 5 for four instants of time and a/h 2 = 4. In this case the resonance

4bct

-Q-=4
b 2

PROGRESS OF
THE POINT
LOAD

C l
:3 -b-

REGIONS OF INFLUENCE OF EQUATIONS

EQ.(23l ,""",' EQ.(251
1II11111111 EQ.(241 .///////, EQ.(26l

FIG. 4. Case II, time-of-arrival diagram (4bet) vs. (ex/b).

occurs at 4hct = 2 and ax/ac = 0·5 again corresponding to U = a. It is shown in the
Appendix that the solution for this case also takes on the expected form when c = 0, that is,
when the load propagates with constant subsonic speed b2

•

CONCLUSIONS

The problem of a string undergoing excitation by a moving load of nonuniform speed
has been solved for two cases in which the speed of the point load either accelerates or
decelerates through the characteristic string speed.
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FIG. 5. Case II, normalized velocity (pu/F) vs. distance (ex/b) for four values of time (4bct).

Examination of (17, 18, 23, 24), Fig. 3 or Fig, 5 shows that as the speed of the load
traverses the characteristic string speed a singularity in transverse string velocity is thrown
off which then propagates as a homogeneous wave at the string speed. Since the integrals
of uover t through this singularity exist in the conventional sense, the displacements remain
continuous with only a vertical slope in u at the singular point of uto indicate, in the dis
placements, the existence of this phenomenon.

REFERENCES
[IJ M. M. KANNINEN and A. L. FLORENCE, Traveling forces on strings and membranes. Int. J. Solids Struct. 3,

143-154 (1967).
[2J J. W. CRAGGS, On two-dimensional waves in an elastic half-space. Proc. Camb.phil. Soc. math.phys. Sci. 56,

269-285 (1960).
[3J R. V. GOL'DSHTEIN, Rayleigh waves and resonance phenomena in elastic bodies. J. appl. Math. Mech. 29,

608-619 (1965).
[4J D. D. ANG, Transient motion of a line load on the surface of an elastic half-space. Q. appl. Math. XVIII,

251-256 (1960).
[5J L. CAGNIARD, Reflection and Refraction of Progressive Seismic Waves. McGraw-Hill (1962).
[6J A. N. TIKHONOV and A. A. SAMARSKII, Equations ofMathematical Physics. Pergamon Press (1963).

APPENDIX

Examination of the results for the two cases in the limit as the constant c ...... 0 shows that
these results attain the expected forms.
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Case I, U = c/x

The form of the point load for this case is F()[t - x 2 /2c]. In the limit as c --> 0, the load
becomes

Fb[t- co] = 0,

F<5[t],

x#o

x = 0,

(AI)

(A2)

and thus it represents a Dirac b function in time acting at the origin only. This can be treated
as an initial value problem in which an infinitesimal length of string at the origin has an
initial velocity corresponding to the impulse applied by the point load. This initial velocity
is clearly

impulse . f:" F(5[t] dt .1x F--- = lIm ~._---- = -.
mass tix~O p.1x p

(AJ)

The solution to this problem is well known (e.g. [6] p. 45) and consists of two velocity pulses
of infinitesimal width and amplitude F/2p propagating, one in each direction, away from
the origin at the string speed a. Examination of all the equations contributing to the solu
tion for this case (1720) shows that they are all zero everywhere except for (17) which gives.

when c = °
u ={ F/2p,

0,

and (20) which gives, when c = 0

u = {F/2P,
0,

x> O. I = x/a

otherwise.

x < 0, t = -x/a

otherwise.

(A4)

(A5)

These are the expected results.
It is interesting to note here that the usual forcing function used for an impulsive point

load at the origin is F()(t)b(x). The well-known solution for the velocity for this loading is

j
F .
-.- ()(t +ax),

U= 2ap
F _
-- (j(t - ax),
2ap

x<o

x>o

and the solution for the displacement is a step wave of amplitude F/2ap propagating away
from the origin in both directions at the string speed a. The solution for the present problem
with c = °has the same qualitative form but since the forcing function has only one (j.

function, the velocity pulses are finite, the impulse and the momentum are zero, and the
displacement remains zero everywhere.

Case II, U = (CX+b)2, Ja > b > 0, C > °
In this case, the forcing function becomes, for c = 0,

[ xJF() t- b2 • (A6)
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(A7)
x < o.

x~o

2- 2-
S U = a uxx '

(A6) represents a point load which appears at the origin at t = 0 and propagates towards
increasing x with the constant subsonic speed b2

. Although a simple problem, for com
parison, its solution will be presented here. Inserting f(x) = x/b2 into (1) and taking the
Laplace transform as defined in (4), (1) becomes

F
s2it = a2iixx+_e-xS/bl,

p

(A8)

x < o.

x~o

a2

s(sU) = - (sU)w
s

(A7) may be rewritten in terms of the Laplace transform of the transverse string speed sii as

a2 F
s(sii) = - (sit)xx +- e - XS/b1,

S P

The Laplace inversion of the solution to (A8) which is appropriate for large ± x in the two
regions and which provides continuity for sit and (sit)x at x = 0 is

2pit H(t-x/a) 2H(t-x/b2
)

x>o--
(a/b 2

) -1 (a 2/b4
) - 1 'F

(A9)
2pit H(t+x/a)

x < O.
F (a/b 2 )+ 1 '

where H is the Heaviside step function.
Examination of all the contributions to this case (23-26) shows that when c = 0,

(24) yields no contribution, (23, 25) together reduce to the first of (A9), and (26) reduces to
the second of(A9). Thus again, the present solutions reduce to the expected results.

(Received 19 Fehruary 1968)

A6cTpaKT-TIOJlY'laeTCli IIOnepe'lHali CKOpOCTh I1AeaJlhHOH CTpyHhl, KorAa OHa nOABepraeTCli cocpe

)lOTO'leHHOH Harpy3Ke, ABI1)((YllleHCli C nepeMeHHOH CKOpOCThlO. BhlBOAliTCli )lBa CJly'lall, B KOTOphlX

HarpY3KI1 Jll160 yCKoplieTClI, Jll160 YMeHhlllaeTCli B cpaBHeHl111 C xapaKTepI1CTI1'1eCKOH CKOpOCThlO

CTpyHhl. I1cCJleAyeTcli IIOCJle)lOBaTeJlhHhIH MOMeHTHOH pe30HaHC. Pe3YJlhTaThl YKa3hlBalOT, 'ITO KorAa

CKOpOCTh HarpY3KI1 nepeXOAI1T '1epe3 CKOpOCTh CTpyHhl, TOr)la Bhl3hlBaeTCli CI1HrYJlllpHOCTh B

nOnepe'lHOH CKOpOCTI1 CTpyHhl, KOTopali 3aTeM pacnpOCTpaHlieTClI, IIpl1 CKOpOCHI CTpyHhl, KaK

OAHopOAHali BOJlHhI. TIepeMellleHl1l1 CTpyHhl OCTalOTCli HenpephIBHhI.


